TraditionalForm(慣用形)参照情報
TraditionalForm(慣用形)参照情報
| 数学定数と領域 | 楕円関数 |
| 数値関数 | マシュー(Mathieu)関数 |
| 初等関数 | 一般・関連関数 |
| 階乗関連の関数 | 行列操作 |
| 組合せ関数 | 論理演算子 |
| 整数論 | 微積分 |
| ゼータ関連の関数 | 離散微分および離散積分 |
| 超幾何関連の関数 | 多項式関数 |
| 直交多項式 | q関数 |
| 逆関数 | アルファベット順のリスト |
| 楕円積分 |
TraditionalFormは,入力および出力のデフォルト形式であるStandardFormとは異なる.ここで理解しておかなければならないのは,TraditionalFormの式は矛盾がないとも限らないのでWolframシステムへの入力として使えるとは限らないということである.従って,StandardFormが入力および出力形式であるのに対して,TraditionalFormは主に出力形式として使われる.
一般的に,TraditionalFormによる数学関数の表現は,StandardFormによる表現とは2つの点で異なる.1つ目は関数の引数が角カッコではなく丸カッコで囲まれるという点で,2つ目は1文字の変数と関数名が 標準テキストではなく斜体で書かれるという点である.
このような一般の相違点に加え,TraditionalFormは多数の式を通常使用される数学表記に変換する.これらの式とその特殊なTraditionalForm表現の一覧は,このチュートリアルの後半に記載してある.
特殊なTraditionalForm表記を持つ関数の例である:
次は行列のTraditionalForm表現である:
次は特殊なTraditionalForm 表現を持つ式の一覧である.アスタリスク(⋆)の付いた項目には隠れた情報(TagBox,InterpretationBox構造や特殊に設計された文字を使ったもの)が含まれているため,矛盾のない入力には適さない可能性がある.
| StandardForm | TraditionalForm | |
| Abs[z] | ⋆ | |
| Arg[z] | ||
| Ceiling[z] | ||
| Conjugate[z] | * | |
| Floor[z] | ||
| FractionalPart[x] | ||
| Max[z] | ||
| Min[z] | ||
| Sign[z] |
| StandardForm | TraditionalForm | |
| ArcCos[z] | ||
| ArcCosh[z] | ||
| ArcCot[z] | ||
| ArcCoth[z] | ||
| ArcCsc[z] | ||
| ArcCsch[z] | ||
| ArcSec[z] | ||
| ArcSech[z] | ||
| ArcSin[z] | ||
| ArcSinh[z] | ||
| ArcTan[z] | ||
| ArcTanh[z] | ||
| Cos[z] | ||
| Cos[z]p | ||
| Cosh[z] | ||
| Cosh[z]p | ||
| Cot[z] | ||
| Cot[z]p | ||
| Coth[z] | ||
| Coth[z]p | ||
| Csc[z] | ||
| Csc[z]p | ||
| Csch[z] | ||
| Csch[z]p | ||
| Log[z] | ||
| Log[z]^p | ||
| Log[b,z] | ||
| Log[b,z]^p | ||
| Sec[z] | ||
| Sec[z]p | ||
| Sech[z] | ||
| Sech[z]p | ||
| Sin[z] | ||
| Sin[z]p | ||
| Sinh[z] | ||
| Sinh[z]p | ||
| Tan[z] | ||
| Tan[z]p | ||
| Tanh[z] | ||
| Tanh[z]p |
| StandardForm | TraditionalForm | |
| Beta[a,b] | ⋆ | |
| Beta[z,a,b] | ⋆ | |
| Beta[z0,z1,a,b] | ⋆ | |
| Binomial[n,m] | ⋆ | |
| Gamma[z] | ||
| Gamma[a,z] | ||
| Gamma[a,z1,z2] | ||
| GammaRegularized[a,z] | ⋆ | |
| GammaRegularized[a,z0,z1] | ⋆ | |
| InverseBetaRegularized[s,a,b] | ⋆ | |
| InverseBetaRegularized[z0,s,a,b] | ⋆ | |
| LogGamma[z] | ||
| Multinomial[n1,n2,…,nk] | ⋆ | |
| Pochhammer[a,n] | ⋆ | |
| PolyGamma[z] | ⋆ | |
| PolyGamma[n,z] | ⋆ |
| StandardForm | TraditionalForm | |
| BernoulliB[n] | ⋆ | |
| BernoulliB[n,z] | ⋆ | |
| ClebschGordan[{j1,m1},{j2,m2},{j3,m3}] | ⋆ | |
| EulerE[n] | ⋆ | |
| EulerE[n,z] | ⋆ | |
| Fibonacci[n] | ⋆ | |
| Fibonacci[n,z] | ⋆ | |
| HarmonicNumber[n] | ⋆ | |
| HarmonicNumber[n,r] | ⋆ | |
| PartitionsP[z] | ⋆ | |
| PartitionsQ[z] | ⋆ | |
| Signature[e1,e2,…] | ⋆ | |
| SixJSymbol[{j1,j2,j3},{j4,j5,j6}] | ⋆ | |
| StirlingS1[n,m] | ⋆ | |
| StirlingS2[n,m] | ⋆ | |
| ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}] | ⋆ |
| StandardForm | TraditionalForm | |
| ArithmeticGeometricMean[a,b] | ⋆ | |
| CarmichaelLambda[n] | ⋆ | |
| DivisorSigma[k,n] | ⋆ | |
| EulerPhi[n] | ⋆ | |
| GCD[n1,n2,…] | ||
| JacobiSymbol[n,m] | ⋆ | |
| LCM[n1,n2,…] | ||
| LiouvilleLambda[n] | * | |
| MangoldtLambda[n] | * | |
| Mod[m,n] | ⋆ | |
| MoebiusMu[n] | ⋆ | |
| MultiplicativeOrder[k,n] | ||
| PowerMod[a,b,n] | ⋆ | |
| Prime[n] | ⋆ | |
| PrimeNu[n] | * | |
| PrimeOmega[n] | * | |
| PrimeZetaP[x] | * | |
| PrimePi[z] | ⋆ | |
| RamanujanTau[n] | ||
| RiemannR[x] | * | |
| SquaresR[d,n] | ⋆ |
| StandardForm | TraditionalForm | |
| LerchPhi[z,s,a] | ⋆ | |
| PolyLog[n,z] | ⋆ | |
| PolyLog[n,p,z] | ⋆ | |
| RiemannSiegelTheta[t] | ⋆ | |
| RiemannSiegelZ[t] | ⋆ | |
| StieltjesGamma[z] | ⋆ | |
| Zeta[s] | ⋆ | |
| Zeta[s,a] | ⋆ |
| StandardForm | TraditionalForm | |
| AiryAi[z] | ||
| AiryAiPrime[z] | ||
| AiryBi[z] | ||
| AiryBiPrime[z] | ||
| AngerJ[ν,x] | * | |
| AngerJ[ν,μ,x] | * | |
| AppellF1[a,b1,b2,c,x,y] | ⋆ | |
| BesselI[n,z] | ||
| BesselJ[n,z] | ||
| BesselK[n,z] | ||
| BesselY[n,z] | ||
| CosIntegral[z] | ||
| CoshIntegral[z] | ||
| DawsonF[x] | * | |
| Erf[z] | ||
| Erf[z0,z1] | ||
| Erfc[z] | ||
| Erfi[z] | ||
| ExpIntegralE[n,z] | ⋆ | |
| ExpIntegralEi[z] | ||
| FresnelC[z] | ||
| FresnelS[z] | ||
| Hypergeometric0F1[a,z] | ⋆ | |
| Hypergeometric0F1Regularized[a,z] | ⋆ | |
| Hypergeometric1F1[a,b,z] | ⋆ | |
| Hypergeometric1F1Regularized[a,b,z] | ⋆ | |
| Hypergeometric2F1[a,b,c,z] | ⋆ | |
| Hypergeometric2F1Regularized[a,b,c,z] | ⋆ | |
| HypergeometricPFQ[{a1,…,ap},{b1,…,bq},z] | ||
| ⋆ | ||
| HypergeometricPFQRegularized[{a1,…,ap},{b1,…,bq},z] | ||
| ⋆ | ||
| HypergeometricU[a,b,z] | ⋆ | |
| LegendreQ[n,x] | ⋆ | |
| LegendreQ[n,m,x] | ⋆ | |
| LegendreQ[n,m,a,z] | ⋆ | |
| LogIntegral[z] | ||
| MeijerG[{{a1,…,an},{an+1,…,ap}},{{b1,…,bm},{bm+1,…,bq}},z] | ||
| ⋆ | ||
| MeijerG[{{a1,…,an},{an+1,…,ap}},{{b1,…,bm},{bm+1,…,bq}},z,r] | ||
| ⋆ | ||
| SinIntegral[z] | ||
| SinhIntegral[z] | ||
| StruveH[ν,z] | ⋆ | |
| StruveL[ν,z] | ⋆ | |
| WeberE[ν,x] | * | |
| WeberE[ν,μ,x] | * | |
| StandardForm | TraditionalForm | |
| ChebyshevT[n,x] | ||
| ChebyshevU[n,x] | ||
| GegenbauerC[n,x] | ||
| GegenbauerC[n,m,x] | ||
| HermiteH[n,x] | ||
| JacobiP[n,a,b,x] | ||
| LaguerreL[n,x] | ||
| LaguerreL[n,a,x] | ||
| LegendreP[n,x] | ⋆ | |
| LegendreP[n,m,x] | ⋆ | |
| LegendreP[n,m,a,z] | ⋆ | |
| SphericalHarmonicY[l,m,θ,ϕ] | ⋆ |
| StandardForm | TraditionalForm | |
| InverseErf[z0,s] | ||
| InverseFunction[f] | ⋆ | |
| ProductLog[z] | ⋆ | |
| ProductLog[k,z] | ⋆ |
| StandardForm | TraditionalForm | |
| EllipticE[m] | ||
| EllipticE[ϕ,m] | ⋆ | |
| EllipticF[ϕ,m] | ⋆ | |
| EllipticK[m] | ||
| EllipticNomeQ[m] | ⋆ | |
| EllipticPi[n,m] | ⋆ | |
| EllipticPi[n,ϕ,m] | ⋆ | |
| JacobiZeta[ϕ,m] | ⋆ |
| StandardForm | TraditionalForm | |
| DedekindEta[t] | ⋆ | |
| EllipticTheta[a,u,q] | ||
| EllipticThetaPrime[a,u,q] | ⋆ | |
| InverseEllipticNomeQ[q] | ⋆ | |
| InverseJacobiCD[u,m] | ⋆ | |
| InverseJacobiCN[u,m] | ⋆ | |
| InverseJacobiCS[u,m] | ⋆ | |
| InverseJacobiDC[u,m] | ⋆ | |
| InverseJacobiDN[u,m] | ⋆ | |
| InverseJacobiDS[u,m] | ⋆ | |
| InverseJacobiNC[u,m] | ⋆ | |
| InverseJacobiND[u,m] | ⋆ | |
| InverseJacobiNS[u,m] | ⋆ | |
| InverseJacobiSC[u,m] | ⋆ | |
| InverseJacobiSD[u,m] | ⋆ | |
| InverseJacobiSN[u,m] | ⋆ | |
| InverseWeierstrassP[p,{g2,g3}] | ||
| JacobiAmplitude[u,m] | ||
| JacobiCD[u,m] | ⋆ | |
| JacobiCN[u,m] | ⋆ | |
| JacobiCS[u,m] | ⋆ | |
| JacobiDC[u,m] | ⋆ | |
| JacobiDN[u,m] | ⋆ | |
| JacobiDS[u,m] | ⋆ | |
| JacobiNC[u,m] | ⋆ | |
| JacobiND[u,m] | ⋆ | |
| JacobiNS[u,m] | ⋆ | |
| JacobiSC[u,m] | ⋆ | |
| JacobiSD[u,m] | ⋆ | |
| JacobiSN[u,m] | ⋆ | |
| KleinInvariantJ[τ] | ⋆ | |
| ModularLambda[τ] | ⋆ | |
| NevilleThetaC[u,m] | ⋆ | |
| NevilleThetaD[u,m] | ⋆ | |
| NevilleThetaN[u,m] | ⋆ | |
| NevilleThetaS[u,m] | ⋆ | |
| WeierstrassP[u,{g2,g3}] | ||
| WeierstrassPPrime[u,{g2,g3}] | ⋆ | |
| WeierstrassSigma[u,{g2,g3}] | ⋆ | |
| WeierstrassZeta[u,{g2,g3}] | ⋆ |
| StandardForm | TraditionalForm | |
| DiracDelta[x1,x2,…] | ⋆ | |
| DiscreteDelta[n1,n2,…] | ⋆ | |
| HeavisideLambda[x] | * | |
| HeavisideLambda[x1,x2,…] | * | |
| HeavisidePi[x] | * | |
| HeavisidePi[x1,x2,…] | * | |
| KroneckerDelta[n1,n2,…] | ⋆ | |
| UnitBox[x] | * | |
| UnitBox[x1,x2,…] | * | |
| UnitStep[x1,x2,…] | ⋆ | |
| UnitTriangle[x] | * | |
| UnitTriangle[x1,x2,…] | * |
| StandardForm | TraditionalForm | |
| Det[A] | ⋆ | |
| Inverse[A] | ||
| Transpose[A] |
| StandardForm | TraditionalForm | |
| And[p1,p2,…] | ||
| Implies[a,b] | ⋆ | |
| Nand[p1,p2,…] | ||
| Nor[p1,p2,…] | ||
| Not[p] | ||
| Or[p1,p2,…] | ||
| Xor[p1,p2,…] |
| StandardForm | TraditionalForm | |
| C[n] | ⋆ | |
| D[f[x]] | ||
| D[f[x],x] | ||
| D[f[x],{x,2}] | ||
| D[f[x],{x,n}] | ||
| Dt[f[x]] | ⋆ | |
| Dt[f[x],x] | ||
| Dt[f[x],{x,2}] | ||
| Dt[f[x],{x,n}] | ||
| Derivative[1][f] | ||
| Derivative[2][f] | ||
| Derivative[d1,…][f] | ⋆ | |
| FourierTransform[expr,t,s] | ||
| FourierTransform[expr,{t1,t2,…},{s1,s2,…}] | ||
| Integrate[expr,x] | ||
| Integrate[expr,x1,y,z] | ||
| Integrate[expr,{x,a,b}] | ||
| Integrate[expr,{x,a,b},{y,m,n},{z,p,q}] | ||
| InverseFourierTransform[expr,s,t] | ||
| InverseFourierTransform[expr,{s1,s2,…},{t1,t2,…}] | ||
| InverseLaplaceTransform[expr,s,t] | ||
| InverseLaplaceTransform[expr,{s1,s2,…},{t1,t2,…}] | ||
| LaplaceTransform[expr,t,s] | ||
| LaplaceTransform[expr,{t1,t2,…},{s1,s2,…}] | ||
| Limit[f[x],x->a] | ||
| Limit[f[x],x->a,Direction->+1] | ||
| Limit[f[x],x->a,Direction->-1] | ||
| O[x] | ||
| O[x]^n | ||
| O[x,a] | ||
| O[x,a]^n | ||
| Piecewise[{{v1,c1},{v2,c2},…}] | ⋆ | |
| Residue[z] | ||
| Series[f[x],{x,a,0}] | ⋆ | |
| Series[f[x],{x,a,1}] | ⋆ | |
| Series[Tan[z^(2/3)],{z,0,3}] | ⋆ |
| StandardForm | TraditionalForm | |
| DifferenceDelta[f,i] | * | |
| DifferenceDelta[f,{i,n}] | * | |
| DifferenceDelta[f,{i,n,h}] | * | |
| DifferenceDelta[f,i,j,...] | * | |
| DiscreteRatio[f,i] | * | |
| DiscreteRatio[f,{i,n}] | * | |
| DiscreteRatio[f,{i,n,h} | * | |
| DiscreteRatio[f,i,j,...] | * | |
| DiscreteShift[f,i] | * | |
| DiscreteShift[f,{i,n}] | * | |
| DiscreteShift[f,{i,n,h}] | * | |
| DiscreteShift[f,i,j,...] | * | |
| InverseZTransform[exp,z,n] | ||
| InverseZTransform[exp,{z1,z2,...},{n1,n2,...}] | ||
| ZTransform[exp,n,z] | ||
| ZTransform[exp,{n1,n2,...},{z1,z2,...}] |
| StandardForm | TraditionalForm | |
| Cyclotomic[n,z] | ⋆ | |
| PolynomialMod[poly,m] | ⋆ |
| StandardForm | TraditionalForm | |
| QBinomial[n,m,q] | * | |
| QFactorial[n,q] | * | |
| QGamma[z,q] | * | |
| QHypergeometricPFQ[{a1,...,at},{b1,...,bs},q,z] | * | |
| QPochhammer[a,q,n] | * | |
| QPochhammer[a,q] | * | |
| QPochhammer[q] | * | |
| QPolyGamma[z,q] | * | |
| QPolyGamma[n,z,q] | * |