TraditionalForm(慣用形)参照情報
TraditionalForm(慣用形)参照情報
数学定数と領域 | 楕円関数 |
数値関数 | マシュー(Mathieu)関数 |
初等関数 | 一般・関連関数 |
階乗関連の関数 | 行列操作 |
組合せ関数 | 論理演算子 |
整数論 | 微積分 |
ゼータ関連の関数 | 離散微分および離散積分 |
超幾何関連の関数 | 多項式関数 |
直交多項式 | q関数 |
逆関数 | アルファベット順のリスト |
楕円積分 |
TraditionalFormは,入力および出力のデフォルト形式であるStandardFormとは異なる.ここで理解しておかなければならないのは,TraditionalFormの式は矛盾がないとも限らないのでWolframシステムへの入力として使えるとは限らないということである.従って,StandardFormが入力および出力形式であるのに対して,TraditionalFormは主に出力形式として使われる.
一般的に,TraditionalFormによる数学関数の表現は,StandardFormによる表現とは2つの点で異なる.1つ目は関数の引数が角カッコではなく丸カッコで囲まれるという点で,2つ目は1文字の変数と関数名が 標準テキストではなく斜体で書かれるという点である.
このような一般の相違点に加え,TraditionalFormは多数の式を通常使用される数学表記に変換する.これらの式とその特殊なTraditionalForm表現の一覧は,このチュートリアルの後半に記載してある.
特殊なTraditionalForm表記を持つ関数の例である:
次は行列のTraditionalForm表現である:
次は特殊なTraditionalForm 表現を持つ式の一覧である.アスタリスク(⋆)の付いた項目には隠れた情報(TagBox,InterpretationBox構造や特殊に設計された文字を使ったもの)が含まれているため,矛盾のない入力には適さない可能性がある.
StandardForm | TraditionalForm | |
Abs[z] | ![]() | ⋆ |
Arg[z] | ![]() | |
Ceiling[z] | ![]() | |
Conjugate[z] | ![]() | * |
Floor[z] | ![]() | |
FractionalPart[x] | ![]() | |
Max[z] | ![]() | |
Min[z] | ![]() | |
Sign[z] | ![]() |
StandardForm | TraditionalForm | |
ArcCos[z] | ![]() | |
ArcCosh[z] | ![]() | |
ArcCot[z] | ![]() | |
ArcCoth[z] | ![]() | |
ArcCsc[z] | ![]() | |
ArcCsch[z] | ![]() | |
ArcSec[z] | ![]() | |
ArcSech[z] | ![]() | |
ArcSin[z] | ![]() | |
ArcSinh[z] | ![]() | |
ArcTan[z] | ![]() | |
ArcTanh[z] | ![]() | |
Cos[z] | ![]() | |
Cos[z]p | ![]() | |
Cosh[z] | ![]() | |
Cosh[z]p | ![]() | |
Cot[z] | ![]() | |
Cot[z]p | ![]() | |
Coth[z] | ![]() | |
Coth[z]p | ![]() | |
Csc[z] | ![]() | |
Csc[z]p | ![]() | |
Csch[z] | ![]() | |
Csch[z]p | ![]() | |
Log[z] | ![]() | |
Log[z]^p | ![]() | |
Log[b,z] | ![]() | |
Log[b,z]^p | ![]() | |
Sec[z] | ![]() | |
Sec[z]p | ![]() | |
Sech[z] | ![]() | |
Sech[z]p | ![]() | |
Sin[z] | ![]() | |
Sin[z]p | ![]() | |
Sinh[z] | ![]() | |
Sinh[z]p | ![]() | |
Tan[z] | ![]() | |
Tan[z]p | ![]() | |
Tanh[z] | ![]() | |
Tanh[z]p | ![]() |
StandardForm | TraditionalForm | |
Beta[a,b] | ![]() | ⋆ |
Beta[z,a,b] | ![]() | ⋆ |
Beta[z0,z1,a,b] | ![]() | ⋆ |
Binomial[n,m] | ![]() | ⋆ |
Gamma[z] | ![]() | |
Gamma[a,z] | ![]() | |
Gamma[a,z1,z2] | ![]() | |
GammaRegularized[a,z] | ![]() | ⋆ |
GammaRegularized[a,z0,z1] | ![]() | ⋆ |
InverseBetaRegularized[s,a,b] | ![]() | ⋆ |
InverseBetaRegularized[z0,s,a,b] | ![]() | ⋆ |
LogGamma[z] | ![]() | |
Multinomial[n1,n2,…,nk] | ![]() | ⋆ |
Pochhammer[a,n] | ![]() | ⋆ |
PolyGamma[z] | ![]() | ⋆ |
PolyGamma[n,z] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
BernoulliB[n] | ![]() | ⋆ |
BernoulliB[n,z] | ![]() | ⋆ |
ClebschGordan[{j1,m1},{j2,m2},{j3,m3}] | ![]() | ⋆ |
EulerE[n] | ![]() | ⋆ |
EulerE[n,z] | ![]() | ⋆ |
Fibonacci[n] | ![]() | ⋆ |
Fibonacci[n,z] | ![]() | ⋆ |
HarmonicNumber[n] | ![]() | ⋆ |
HarmonicNumber[n,r] | ![]() | ⋆ |
PartitionsP[z] | ![]() | ⋆ |
PartitionsQ[z] | ![]() | ⋆ |
Signature[e1,e2,…] | ![]() | ⋆ |
SixJSymbol[{j1,j2,j3},{j4,j5,j6}] | ![]() | ⋆ |
StirlingS1[n,m] | ![]() | ⋆ |
StirlingS2[n,m] | ![]() | ⋆ |
ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
ArithmeticGeometricMean[a,b] | ![]() | ⋆ |
CarmichaelLambda[n] | ![]() | ⋆ |
DivisorSigma[k,n] | ![]() | ⋆ |
EulerPhi[n] | ![]() | ⋆ |
GCD[n1,n2,…] | ![]() | |
JacobiSymbol[n,m] | ![]() | ⋆ |
LCM[n1,n2,…] | ![]() | |
LiouvilleLambda[n] | ![]() | * |
MangoldtLambda[n] | ![]() | * |
Mod[m,n] | ![]() | ⋆ |
MoebiusMu[n] | ![]() | ⋆ |
MultiplicativeOrder[k,n] | ![]() | |
PowerMod[a,b,n] | ![]() | ⋆ |
Prime[n] | ![]() | ⋆ |
PrimeNu[n] | ![]() | * |
PrimeOmega[n] | ![]() | * |
PrimeZetaP[x] | ![]() | * |
PrimePi[z] | ![]() | ⋆ |
RamanujanTau[n] | ![]() | |
RiemannR[x] | ![]() | * |
SquaresR[d,n] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
LerchPhi[z,s,a] | ![]() | ⋆ |
PolyLog[n,z] | ![]() | ⋆ |
PolyLog[n,p,z] | ![]() | ⋆ |
RiemannSiegelTheta[t] | ![]() | ⋆ |
RiemannSiegelZ[t] | ![]() | ⋆ |
StieltjesGamma[z] | ![]() | ⋆ |
Zeta[s] | ![]() | ⋆ |
Zeta[s,a] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
AiryAi[z] | ![]() | |
AiryAiPrime[z] | ![]() | |
AiryBi[z] | ![]() | |
AiryBiPrime[z] | ![]() | |
AngerJ[ν,x] | ![]() | * |
AngerJ[ν,μ,x] | ![]() | * |
AppellF1[a,b1,b2,c,x,y] | ![]() | ⋆ |
BesselI[n,z] | ![]() | |
BesselJ[n,z] | ![]() | |
BesselK[n,z] | ![]() | |
BesselY[n,z] | ![]() | |
CosIntegral[z] | ![]() | |
CoshIntegral[z] | ![]() | |
DawsonF[x] | ![]() | * |
Erf[z] | ![]() | |
Erf[z0,z1] | ![]() | |
Erfc[z] | ![]() | |
Erfi[z] | ![]() | |
ExpIntegralE[n,z] | ![]() | ⋆ |
ExpIntegralEi[z] | ![]() | |
FresnelC[z] | ![]() | |
FresnelS[z] | ![]() | |
Hypergeometric0F1[a,z] | ![]() | ⋆ |
Hypergeometric0F1Regularized[a,z] | ![]() | ⋆ |
Hypergeometric1F1[a,b,z] | ![]() | ⋆ |
Hypergeometric1F1Regularized[a,b,z] | ![]() | ⋆ |
Hypergeometric2F1[a,b,c,z] | ![]() | ⋆ |
Hypergeometric2F1Regularized[a,b,c,z] | ![]() | ⋆ |
HypergeometricPFQ[{a1,…,ap},{b1,…,bq},z] | ||
![]() | ⋆ | |
HypergeometricPFQRegularized[{a1,…,ap},{b1,…,bq},z] | ||
![]() | ⋆ | |
HypergeometricU[a,b,z] | ![]() | ⋆ |
LegendreQ[n,x] | ![]() | ⋆ |
LegendreQ[n,m,x] | ![]() | ⋆ |
LegendreQ[n,m,a,z] | ![]() | ⋆ |
LogIntegral[z] | ![]() | |
MeijerG[{{a1,…,an},{an+1,…,ap}},{{b1,…,bm},{bm+1,…,bq}},z] | ||
![]() | ⋆ | |
MeijerG[{{a1,…,an},{an+1,…,ap}},{{b1,…,bm},{bm+1,…,bq}},z,r] | ||
![]() | ⋆ | |
SinIntegral[z] | ![]() | |
SinhIntegral[z] | ![]() | |
StruveH[ν,z] | ![]() | ⋆ |
StruveL[ν,z] | ![]() | ⋆ |
WeberE[ν,x] | ![]() | * |
WeberE[ν,μ,x] | ![]() | * |
StandardForm | TraditionalForm | |
ChebyshevT[n,x] | ![]() | |
ChebyshevU[n,x] | ![]() | |
GegenbauerC[n,x] | ![]() | |
GegenbauerC[n,m,x] | ![]() | |
HermiteH[n,x] | ![]() | |
JacobiP[n,a,b,x] | ![]() | |
LaguerreL[n,x] | ![]() | |
LaguerreL[n,a,x] | ![]() | |
LegendreP[n,x] | ![]() | ⋆ |
LegendreP[n,m,x] | ![]() | ⋆ |
LegendreP[n,m,a,z] | ![]() | ⋆ |
SphericalHarmonicY[l,m,θ,ϕ] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
InverseErf[z0,s] | ![]() | |
InverseFunction[f] | ![]() | ⋆ |
ProductLog[z] | ![]() | ⋆ |
ProductLog[k,z] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
EllipticE[m] | ![]() | |
EllipticE[ϕ,m] | ![]() | ⋆ |
EllipticF[ϕ,m] | ![]() | ⋆ |
EllipticK[m] | ![]() | |
EllipticNomeQ[m] | ![]() | ⋆ |
EllipticPi[n,m] | ![]() | ⋆ |
EllipticPi[n,ϕ,m] | ![]() | ⋆ |
JacobiZeta[ϕ,m] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
DedekindEta[t] | ![]() | ⋆ |
EllipticTheta[a,u,q] | ![]() | |
EllipticThetaPrime[a,u,q] | ![]() | ⋆ |
InverseEllipticNomeQ[q] | ![]() | ⋆ |
InverseJacobiCD[u,m] | ![]() | ⋆ |
InverseJacobiCN[u,m] | ![]() | ⋆ |
InverseJacobiCS[u,m] | ![]() | ⋆ |
InverseJacobiDC[u,m] | ![]() | ⋆ |
InverseJacobiDN[u,m] | ![]() | ⋆ |
InverseJacobiDS[u,m] | ![]() | ⋆ |
InverseJacobiNC[u,m] | ![]() | ⋆ |
InverseJacobiND[u,m] | ![]() | ⋆ |
InverseJacobiNS[u,m] | ![]() | ⋆ |
InverseJacobiSC[u,m] | ![]() | ⋆ |
InverseJacobiSD[u,m] | ![]() | ⋆ |
InverseJacobiSN[u,m] | ![]() | ⋆ |
InverseWeierstrassP[p,{g2,g3}] | ![]() | |
JacobiAmplitude[u,m] | ![]() | |
JacobiCD[u,m] | ![]() | ⋆ |
JacobiCN[u,m] | ![]() | ⋆ |
JacobiCS[u,m] | ![]() | ⋆ |
JacobiDC[u,m] | ![]() | ⋆ |
JacobiDN[u,m] | ![]() | ⋆ |
JacobiDS[u,m] | ![]() | ⋆ |
JacobiNC[u,m] | ![]() | ⋆ |
JacobiND[u,m] | ![]() | ⋆ |
JacobiNS[u,m] | ![]() | ⋆ |
JacobiSC[u,m] | ![]() | ⋆ |
JacobiSD[u,m] | ![]() | ⋆ |
JacobiSN[u,m] | ![]() | ⋆ |
KleinInvariantJ[τ] | ![]() | ⋆ |
ModularLambda[τ] | ![]() | ⋆ |
NevilleThetaC[u,m] | ![]() | ⋆ |
NevilleThetaD[u,m] | ![]() | ⋆ |
NevilleThetaN[u,m] | ![]() | ⋆ |
NevilleThetaS[u,m] | ![]() | ⋆ |
WeierstrassP[u,{g2,g3}] | ![]() | |
WeierstrassPPrime[u,{g2,g3}] | ![]() | ⋆ |
WeierstrassSigma[u,{g2,g3}] | ![]() | ⋆ |
WeierstrassZeta[u,{g2,g3}] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
DiracDelta[x1,x2,…] | ![]() | ⋆ |
DiscreteDelta[n1,n2,…] | ![]() | ⋆ |
HeavisideLambda[x] | ![]() | * |
HeavisideLambda[x1,x2,…] | ![]() | * |
HeavisidePi[x] | ![]() | * |
HeavisidePi[x1,x2,…] | ![]() | * |
KroneckerDelta[n1,n2,…] | ![]() | ⋆ |
UnitBox[x] | ![]() | * |
UnitBox[x1,x2,…] | ![]() | * |
UnitStep[x1,x2,…] | ![]() | ⋆ |
UnitTriangle[x] | ![]() | * |
UnitTriangle[x1,x2,…] | ![]() | * |
StandardForm | TraditionalForm | |
Det[A] | ![]() | ⋆ |
Inverse[A] | ![]() | |
Transpose[A] | ![]() |
StandardForm | TraditionalForm | |
And[p1,p2,…] | ![]() | |
Implies[a,b] | ![]() | ⋆ |
Nand[p1,p2,…] | ![]() | |
Nor[p1,p2,…] | ![]() | |
Not[p] | ![]() | |
Or[p1,p2,…] | ![]() | |
Xor[p1,p2,…] | ![]() |
StandardForm | TraditionalForm | |
C[n] | ![]() | ⋆ |
D[f[x]] | ![]() | |
D[f[x],x] | ![]() | |
D[f[x],{x,2}] | ![]() | |
D[f[x],{x,n}] | ![]() | |
Dt[f[x]] | ![]() | ⋆ |
Dt[f[x],x] | ![]() | |
Dt[f[x],{x,2}] | ![]() | |
Dt[f[x],{x,n}] | ![]() | |
Derivative[1][f] | ![]() | |
Derivative[2][f] | ![]() | |
Derivative[d1,…][f] | ![]() | ⋆ |
FourierTransform[expr,t,s] | ![]() | |
FourierTransform[expr,{t1,t2,…},{s1,s2,…}] | ![]() | |
Integrate[expr,x] | ![]() | |
Integrate[expr,x1,y,z] | ![]() | |
Integrate[expr,{x,a,b}] | ![]() | |
Integrate[expr,{x,a,b},{y,m,n},{z,p,q}] | ![]() | |
InverseFourierTransform[expr,s,t] | ![]() | |
InverseFourierTransform[expr,{s1,s2,…},{t1,t2,…}] | ![]() | |
InverseLaplaceTransform[expr,s,t] | ![]() | |
InverseLaplaceTransform[expr,{s1,s2,…},{t1,t2,…}] | ![]() | |
LaplaceTransform[expr,t,s] | ![]() | |
LaplaceTransform[expr,{t1,t2,…},{s1,s2,…}] | ![]() | |
Limit[f[x],x->a] | ![]() | |
Limit[f[x],x->a,Direction->+1] | ![]() | |
Limit[f[x],x->a,Direction->-1] | ![]() | |
O[x] | ![]() | |
O[x]^n | ![]() | |
O[x,a] | ![]() | |
O[x,a]^n | ![]() | |
Piecewise[{{v1,c1},{v2,c2},…}] | ![]() | ⋆ |
Residue[z] | ![]() | |
Series[f[x],{x,a,0}] | ![]() | ⋆ |
Series[f[x],{x,a,1}] | ![]() | ⋆ |
Series[Tan[z^(2/3)],{z,0,3}] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
DifferenceDelta[f,i] | ![]() | * |
DifferenceDelta[f,{i,n}] | * | |
DifferenceDelta[f,{i,n,h}] | ![]() | * |
DifferenceDelta[f,i,j,...] | ![]() | * |
DiscreteRatio[f,i] | ![]() | * |
DiscreteRatio[f,{i,n}] | ![]() | * |
DiscreteRatio[f,{i,n,h} | ![]() | * |
DiscreteRatio[f,i,j,...] | ![]() | * |
DiscreteShift[f,i] | ![]() | * |
DiscreteShift[f,{i,n}] | ![]() | * |
DiscreteShift[f,{i,n,h}] | ![]() | * |
DiscreteShift[f,i,j,...] | ![]() | * |
InverseZTransform[exp,z,n] | ![]() | |
InverseZTransform[exp,{z1,z2,...},{n1,n2,...}] | ![]() | |
ZTransform[exp,n,z] | ![]() | |
ZTransform[exp,{n1,n2,...},{z1,z2,...}] | ![]() |
StandardForm | TraditionalForm | |
Cyclotomic[n,z] | ![]() | ⋆ |
PolynomialMod[poly,m] | ![]() | ⋆ |
StandardForm | TraditionalForm | |
QBinomial[n,m,q] | ![]() | * |
QFactorial[n,q] | ![]() | * |
QGamma[z,q] | ![]() | * |
QHypergeometricPFQ[{a1,...,at},{b1,...,bs},q,z] | ![]() | * |
QPochhammer[a,q,n] | ![]() | * |
QPochhammer[a,q] | ![]() | * |
QPochhammer[q] | ![]() | * |
QPolyGamma[z,q] | ![]() | * |
QPolyGamma[n,z,q] | ![]() | * |