TraditionalForm 参考信息

TraditionalForm 与输入与输出的默认格式 StandardForm 不同. TraditionalForm 表达式不可能总给 Wolfram 系统提供无歧义输入,理解这一点是很重要的. 因此,尽管 StandardForm 既可作为输入格式也可作为输出格式,TraditionalForm 基本上仅用作输出格式.
一般而言,一个数学函数的 TraditionalForm 表示与它的 StandardForm 表示在两方面上不同:第一,函数的自变量放在圆括号里而不是方括号里;第二,单字符变量和函数名为斜体而不是纯文本格式.
除了这些一般意义上的不同,TraditionalForm 将很大的一组表达式变形为常规使用的数学符号. 这些表达式及其特殊的 TraditionalForm 表示将在本节教程的后面以表格形式列出.
这里显示了一个无特殊符号的数学函数;其输入和输出分别为 StandardFormTraditionalForm
这是一个函数有自己特殊的 TraditionalForm 记号的例子:
矩阵的 TraditionalForm 表示在这里显示:
Wolfram 系统函数和命令的 TraditionalForm 表示与使用方括号(例如在 StandardForm 中)的传统数学表示不同.
这里是 Wolfram 系统函数 PlotTraditionalForm 表示:
下面各表列出了带有特定 TraditionalForm 表示的表达式. 标记有星号 () 的项包含隐藏信息(使用 TagBox 或者InterpretationBox 构建或特殊设计的字符),有可能不适合无歧义输入.
数学常数和域
数学常数和域.
数值函数
数值函数.
初等函数
StandardFormTraditionalForm
ArcCos[z]
ArcCosh[z]
ArcCot[z]
ArcCoth[z]
ArcCsc[z]
ArcCsch[z]
ArcSec[z]
ArcSech[z]
ArcSin[z]
ArcSinh[z]
ArcTan[z]
ArcTanh[z]
Cos[z]
Cos[z]p
Cosh[z]
Cosh[z]p
Cot[z]
Cot[z]p
Coth[z]
Coth[z]p
Csc[z]
Csc[z]p
Csch[z]
Csch[z]p
Log[z]
Log[z]^p
Log[b,z]
Log[b,z]^p
Sec[z]
Sec[z]p
Sech[z]
Sech[z]p
Sin[z]
Sin[z]p
Sinh[z]
Sinh[z]p
Tan[z]
Tan[z]p
Tanh[z]
Tanh[z]p
初等函数.
与阶乘相关的函数
StandardFormTraditionalForm
Beta[a,b]
Beta[z,a,b]
Beta[z0,z1,a,b]
Binomial[n,m]
Gamma[z]
Gamma[a,z]
Gamma[a,z1,z2]
GammaRegularized[a,z]
GammaRegularized[a,z0,z1]
InverseBetaRegularized[s,a,b]
InverseBetaRegularized[z0,s,a,b]
LogGamma[z]
Multinomial[n1,n2,,nk]
Pochhammer[a,n]
PolyGamma[z]
PolyGamma[n,z]
与阶乘相关的函数.
组合函数
StandardFormTraditionalForm
BernoulliB[n]
BernoulliB[n,z]
ClebschGordan[{j1,m1},{j2,m2},{j3,m3}]
EulerE[n]
EulerE[n,z]
Fibonacci[n]
Fibonacci[n,z]
HarmonicNumber[n]
HarmonicNumber[n,r]
PartitionsP[z]
PartitionsQ[z]
Signature[e1,e2,]
SixJSymbol[{j1,j2,j3},{j4,j5,j6}]
StirlingS1[n,m]
StirlingS2[n,m]
ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}]
组合函数.
数论
数论.
与 Zeta 函数相关的函数
StandardFormTraditionalForm
LerchPhi[z,s,a]
PolyLog[n,z]
PolyLog[n,p,z]
RiemannSiegelTheta[t]
RiemannSiegelZ[t]
StieltjesGamma[z]
Zeta[s]
Zeta[s,a]
与 Zeta 函数相关的函数.
与超几何函数相关的函数
StandardFormTraditionalForm
AiryAi[z]
AiryAiPrime[z]
AiryBi[z]
AiryBiPrime[z]
AngerJ[ν,x]*
AngerJ[ν,μ,x]*
AppellF1[a,b1,b2,c,x,y]
BesselI[n,z]
BesselJ[n,z]
BesselK[n,z]
BesselY[n,z]
CosIntegral[z]
CoshIntegral[z]
DawsonF[x]*
Erf[z]
Erf[z0,z1]
Erfc[z]
Erfi[z]
ExpIntegralE[n,z]
ExpIntegralEi[z]
FresnelC[z]
FresnelS[z]
Hypergeometric0F1[a,z]
Hypergeometric0F1Regularized[a,z]
Hypergeometric1F1[a,b,z]
Hypergeometric1F1Regularized[a,b,z]
Hypergeometric2F1[a,b,c,z]
Hypergeometric2F1Regularized[a,b,c,z]
HypergeometricPFQ[{a1,,ap},{b1,,bq},z]
HypergeometricPFQRegularized[{a1,,ap},{b1,,bq},z]
HypergeometricU[a,b,z]
LegendreQ[n,x]
LegendreQ[n,m,x]
LegendreQ[n,m,a,z]
LogIntegral[z]
MeijerG[{{a1,,an},{an+1,,ap}},{{b1,,bm},{bm+1,,bq}},z]
MeijerG[{{a1,,an},{an+1,,ap}},{{b1,,bm},{bm+1,,bq}},z,r]
SinIntegral[z]
SinhIntegral[z]
StruveH[ν,z]
StruveL[ν,z]
WeberE[ν,x]*
WeberE[ν,μ,x]*
与超几何函数相关的函数.
正交多项式
StandardFormTraditionalForm
ChebyshevT[n,x]
ChebyshevU[n,x]
GegenbauerC[n,x]
GegenbauerC[n,m,x]
HermiteH[n,x]
JacobiP[n,a,b,x]
LaguerreL[n,x]
LaguerreL[n,a,x]
LegendreP[n,x]
LegendreP[n,m,x]
LegendreP[n,m,a,z]
SphericalHarmonicY[l,m,θ,ϕ]
正交多项式.
反函数
反函数.
椭圆积分
椭圆积分.
椭圆函数
StandardFormTraditionalForm
DedekindEta[t]
EllipticTheta[a,u,q]
EllipticThetaPrime[a,u,q]
InverseEllipticNomeQ[q]
InverseJacobiCD[u,m]
InverseJacobiCN[u,m]
InverseJacobiCS[u,m]
InverseJacobiDC[u,m]
InverseJacobiDN[u,m]
InverseJacobiDS[u,m]
InverseJacobiNC[u,m]
InverseJacobiND[u,m]
InverseJacobiNS[u,m]
InverseJacobiSC[u,m]
InverseJacobiSD[u,m]
InverseJacobiSN[u,m]
InverseWeierstrassP[p,{g2,g3}]
JacobiAmplitude[u,m]
JacobiCD[u,m]
JacobiCN[u,m]
JacobiCS[u,m]
JacobiDC[u,m]
JacobiDN[u,m]
JacobiDS[u,m]
JacobiNC[u,m]
JacobiND[u,m]
JacobiNS[u,m]
JacobiSC[u,m]
JacobiSD[u,m]
JacobiSN[u,m]
KleinInvariantJ[τ]
ModularLambda[τ]
NevilleThetaC[u,m]
NevilleThetaD[u,m]
NevilleThetaN[u,m]
NevilleThetaS[u,m]
WeierstrassP[u,{g2,g3}]
WeierstrassPPrime[u,{g2,g3}]
WeierstrassSigma[u,{g2,g3}]
WeierstrassZeta[u,{g2,g3}]
椭圆函数.
Mathieu 函数
Mathieu 函数.
广义函数及相关函数
StandardFormTraditionalForm
DiracDelta[x1,x2,]
DiscreteDelta[n1,n2,]
HeavisideLambda[x]*
HeavisideLambda[x1,x2,]*
HeavisidePi[x]*
HeavisidePi[x1,x2,]*
KroneckerDelta[n1,n2,]
UnitBox[x]*
UnitBox[x1,x2,]*
UnitStep[x1,x2,]
UnitTriangle[x]*
UnitTriangle[x1,x2,]*
广义函数及相关函数.
矩阵运算
矩阵运算.
逻辑运算
StandardFormTraditionalForm
And[p1,p2,]
Implies[a,b]
Nand[p1,p2,]
Nor[p1,p2,]
Not[p]
Or[p1,p2,]
Xor[p1,p2,]
逻辑运算.
微积分
StandardFormTraditionalForm
C[n]
D[f[x]]
D[f[x],x]
D[f[x],{x,2}]
D[f[x],{x,n}]
Dt[f[x]]
Dt[f[x],x]
Dt[f[x],{x,2}]
Dt[f[x],{x,n}]
Derivative[1][f]
Derivative[2][f]
Derivative[d1,][f]
FourierTransform[expr,t,s]
FourierTransform[expr,{t1,t2,},{s1,s2,}]
Integrate[expr,x]
Integrate[expr,x1,y,z]
Integrate[expr,{x,a,b}]
Integrate[expr,{x,a,b},{y,m,n},{z,p,q}]
InverseFourierTransform[expr,s,t]
InverseFourierTransform[expr,{s1,s2,},{t1,t2,}]
InverseLaplaceTransform[expr,s,t]
InverseLaplaceTransform[expr,{s1,s2,},{t1,t2,}]
LaplaceTransform[expr,t,s]
LaplaceTransform[expr,{t1,t2,},{s1,s2,}]
Limit[f[x],x->a]
Limit[f[x],x->a,Direction->+1]
Limit[f[x],x->a,Direction->-1]
O[x]
O[x]^n
O[x,a]
O[x,a]^n
Piecewise[{{v1,c1},{v2,c2},}]
Residue[z]
Series[f[x],{x,a,0}]
Series[f[x],{x,a,1}]
Series[Tan[z^(2/3)],{z,0,3}]
微积分.
离散微积分
StandardFormTraditionalForm
DifferenceDelta[f,i]*
DifferenceDelta[f,{i,n}]
*
DifferenceDelta[f,{i,n,h}]*
DifferenceDelta[f,i,j,...]*
DiscreteRatio[f,i]*
DiscreteRatio[f,{i,n}]*
DiscreteRatio[f,{i,n,h}*
DiscreteRatio[f,i,j,...]*
DiscreteShift[f,i]*
DiscreteShift[f,{i,n}]*
DiscreteShift[f,{i,n,h}]*
DiscreteShift[f,i,j,...]*
InverseZTransform[exp,z,n]
InverseZTransform[exp,{z1,z2,...},{n1,n2,...}]
ZTransform[exp,n,z]
ZTransform[exp,{n1,n2,...},{z1,z2,...}]
离散微积分.
多项式函数
多项式函数.
q 函数
StandardFormTraditionalForm
QBinomial[n,m,q]*
QFactorial[n,q]*
QGamma[z,q]*
QHypergeometricPFQ[{a1,...,at},{b1,...,bs},q,z]*
QPochhammer[a,q,n]*
QPochhammer[a,q]*
QPochhammer[q]*
QPolyGamma[z,q]*
QPolyGamma[n,z,q]*
Q 函数.
完整的字母序列表
StandardFormTraditionalForm
Abs[z]
AiryAi[z]
AiryAiPrime[z]
AiryBi[z]
AiryBiPrime[z]
Algebraics
And[p1,p2,]
AngerJ[ν,x]*
AngerJ[ν,μ,x]*
AppellF1[a,b1,b2,c,x,y]
ArcCos[z]
ArcCosh[z]
ArcCot[z]
ArcCoth[z]
ArcCsc[z]
ArcCsch[z]
ArcSec[z]
ArcSech[z]
ArcSin[z]
ArcSinh[z]
ArcTan[z]
ArcTanh[z]
Arg[z]
ArithmeticGeometricMean[a,b]
BernoulliB[n]
BernoulliB[n,z]
BesselI[n,z]
BesselJ[n,z]
BesselK[n,z]
BesselY[n,z]
Beta[a,b]
Beta[z,a,b]
Beta[z0,z1,a,b]
BetaRegularized[z,a,b]
BetaRegularized[z0,z1,a,b]
Binomial[n,m]
Booleans
C[n]
CarmichaelLambda[n]
Catalan
Ceiling[z]
ChampernowneNumber[b]*
ChebyshevT[n,x]
ChebyshevU[n,x]
ClebschGordan[{j1,m1},{j2,m2},{j3,m3}]
Complexes
Conjugate[z]*
Cos[z]
Cos[z]p
Cosh[z]
Cosh[z]p
CosIntegral[z]
CoshIntegral[z]
Cot[z]
Cot[z]p
Coth[z]
Coth[z]p
Csc[z]
Csc[z]p
Csch[z]
Csch[z]p
Cyclotomic[n,z]
D[f[x]]
D[f[x],x]
D[f[x],{x,2}]
D[f[x],{x,n}]
Dt[f[x]]
Dt[f[x],x]
Dt[f[x],{x,2}]
Dt[f[x],{x,n}]
DawsonF[x]*
DedekindEta[t]
Derivative[1][f]
Derivative[2][f]
Derivative[d1,][f]
Det[A]
DifferenceDelta[f,i]*
DifferenceDelta[f,{i,n}]*
DifferenceDelta[f,{i,n,h}]*
DifferenceDelta[f,i,j,...]*
DiracDelta[x1,x2,]
DiscreteDelta[n1,n2,]
DiscreteRatio[f,i]*
DiscreteRatio[f,{i,n}]*
DiscreteRatio[f,{i,n,h}*
DiscreteRatio[f,i,j,...]*
DiscreteShift[f,i]*
DiscreteShift[f,{i,n}]*
DiscreteShift[f,{i,n,h}]*
DiscreteShift[f,i,j,...]*
DivisorSigma[k,n]
EllipticE[m]
EllipticE[ϕ,m]
EllipticF[ϕ,m]
EllipticK[m]
EllipticNomeQ[m]
EllipticPi[n,m]
EllipticPi[n,ϕ,m]
EllipticTheta[a,u,q]
EllipticThetaPrime[a,u,q]
Erf[z]
Erf[z0,z1]
Erfc[z]
Erfi[z]
EulerE[n]
EulerE[n,z]
EulerGamma
EulerPhi[n]
ExpIntegralE[n,z]
ExpIntegralEi[z]
Fibonacci[n]
Fibonacci[n,z]
Floor[z]
FourierTransform[expr,t,s]
FourierTransform[expr,{t1,t2,},{s1,s2,}]
FractionalPart[x]
FresnelC[z]
FresnelS[z]
Gamma[z]
Gamma[a,z]
Gamma[a,z1,z2]
GammaRegularized[a,z]
GammaRegularized[a,z0,z1]
GCD[n1,n2,]
GegenbauerC[n,x]
GegenbauerC[n,m,x]
Glaisher
GoldenRatio
HarmonicNumber[n]
HarmonicNumber[n,r]
HeavisideLambda[x]*
HeavisideLambda[x1,x2,]*
HeavisidePi[x]*
HeavisidePi[x1,x2,]*
HermiteH[n,x]
Hypergeometric0F1[a,z]
Hypergeometric0F1Regularized[a,z]
Hypergeometric1F1[a,b,z]
Hypergeometric1F1Regularized[a,b,z]
Hypergeometric2F1[a,b,c,z]
Hypergeometric2F1Regularized[a,b,c,z]
HypergeometricPFQ[{a1,,ap},{b1,,bq},z]
HypergeometricPFQRegularized[{a1,,ap},{b1,,bq},z]
HypergeometricU[a,b,z]
Implies[a,b]
Integers
Integrate[expr,x]
Integrate[expr,x1,y,z]
Integrate[expr,{x,a,b}]
Integrate[expr,{x,a,b},{y,m,n},{z,p,q}]
Inverse[A]
InverseBetaRegularized[s,a,b]
InverseBetaRegularized[z0,s,a,b]
InverseEllipticNomeQ[q]
InverseErf[z0,s]
InverseFourierTransform[expr,s,t]
InverseFourierTransform[expr,{s1,s2,},{t1,t2,}]
InverseFunction[f]
InverseJacobiCD[u,m]
InverseJacobiCN[u,m]
InverseJacobiCS[u,m]
InverseJacobiDC[u,m]
InverseJacobiDN[u,m]
InverseJacobiDS[u,m]
InverseJacobiNC[u,m]
InverseJacobiND[u,m]
InverseJacobiNS[u,m]
InverseJacobiSC[u,m]
InverseJacobiSD[u,m]
InverseJacobiSN[u,m]
InverseLaplaceTransform[expr,s,t]
InverseLaplaceTransform[expr,{s1,s2,},{t1,t2,}]
InverseWeierstrassP[p,{g2,g3}]
InverseZTransform[exp,z,n]
InverseZTransform[exp,{z1,z2,},{n1,n2,}]
JacobiAmplitude[u,m]
JacobiCD[u,m]
JacobiCN[u,m]
JacobiCS[u,m]
JacobiDC[u,m]
JacobiDN[u,m]
JacobiDS[u,m]
JacobiNC[u,m]
JacobiND[u,m]
JacobiNS[u,m]
JacobiSC[u,m]
JacobiSD[u,m]
JacobiSN[u,m]
JacobiP[n,a,b,x]
JacobiSymbol[n,m]
JacobiZeta[ϕ,m]
Khinchin*
KleinInvariantJ[τ]
KroneckerDelta[n1,n2,]
LaguerreL[n,x]
LaguerreL[n,a,x]
LegendreP[n,x]
LegendreP[n,m,x]
LegendreP[n,m,a,z]
LaplaceTransform[expr,t,s]
LaplaceTransform[expr,s,t]
LCM[n1,n2,]
LegendreQ[n,x]
LegendreQ[n,m,x]
LegendreQ[n,m,a,z]
LerchPhi[z,s,a]
Limit[f[x],x->a]
Limit[f[x],x->a,Direction->+1]
Limit[f[x],x->a,Direction->-1]
LiouvilleLambda[n]*
Log[z]
Log[b,z]
Log[z]^p
Log[b,z]^p
LogGamma[z]
LogIntegral[z]
MangoldtLambda[n]*
MathieuCharacteristicA[r,q]
MathieuCharacteristicB[r,q]
Max[z]
MeijerG[{{a1,,an},{an+1,,ap}},{{b1,,bm},{bm+1,,bq}},z]
MeijerG[{{a1,,an},{an+1,,ap}},{{b1,,bm},{bm+1,,bq}},z,r]
Min[z]
Mod[m,n]
ModularLambda[τ]
MoebiusMu[n]
Multinomial[n1,n2,,nk]
MultiplicativeOrder[k,n]
Nand[p1,p2,]
NevilleThetaC[u,m]
NevilleThetaD[u,m]
NevilleThetaN[u,m]
NevilleThetaS[u,m]
Nor[p1,p2,]
Not[p]
O[x]
O[x]^n
O[x,a]
O[x,a]^n
Or[p1,p2,]
PartitionsP[z]
PartitionsQ[z]
Piecewise[{{v1,c1},{v2,c2},}]
Pochhammer[a,n]
PolyGamma[z]
PolyGamma[n,z]
PolyLog[ν,z]
PolyLog[ν,p,z]
PolynomialMod[poly,m]
PowerMod[a,b,n]
Prime[n]
PrimeNu[n]*
PrimeOmega[n]*
PrimePi[z]
PrimeZetaP[x]*
Primes
ProductLog[z]
ProductLog[k,z]
QBinomial[n,m,q]*
QFactorial[n,q]*
QGamma[z,q]*
QHypergeometricPFQ[{a1,,at},{b1,,bs},q,z]*
QPochhammer[a,q,n]*
QPochhammer[a,q]*
QPochhammer[q]*
QPolyGamma[z,q]*
QPolyGamma[n,z,q]*
RamanujanTau[n]
Rationals
Reals
Residue[z]
RiemannR[x]*
RiemannSiegelTheta[t]
RiemannSiegelZ[t]
Sec[z]
Sec[z]p
Sech[z]
Sech[z]p
Series[f[x],{x,a,0}]
Series[f[x],{x,a,1}]
Series[Tan[z^(2/3)],{z,0,3}]
Sign[z]
Signature[e1,e2,]
Sin[z]
Sin[z]p
Sinh[z]
Sinh[z]p
SinIntegral[z]
SinhIntegral[z]
SixJSymbol[{j1,j2,j3},{j4,j5,j6}]
SphericalHarmonicY[l,m,θ,ϕ]
SquaresR[d,n]*
StieltjesGamma[n]
StieltjesGamma[n,a]*
StirlingS1[n,m]
StirlingS2[n,m]
StruveH[ν,z]
StruveL[ν,z]
Tan[z]
Tan[z]p
Tanh[z]
Tanh[z]p
ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}]
Transpose[A]
UnitBox[x]*
UnitBox[x1,x2,]*
UnitStep[x1,x2,]
UnitTriangle[x]*
UnitTriangle[x1,x2,]*
WeberE[ν,x]*
WeberE[ν,μ,x]*
WeierstrassP[u,{g2,g3}]
WeierstrassPPrime[u,{g2,g3}]
WeierstrassSigma[u,{g2,g3}]
WeierstrassZeta[u,{g2,g3}]
Xor[p1,p2,]
Zeta[s]
Zeta[s,a]
ZTransform[exp,n,z]
ZTransform[exp,{n1,n2,},{z1,z2,}]
完整的字母序列表.